论文标题

使用统计准确的多尺度随机模型和信息理论来量化ENSO复杂性的可预测性

Quantifying the Predictability of ENSO Complexity Using a Statistically Accurate Multiscale Stochastic Model and Information Theory

论文作者

Fang, Xianghui, Chen, Nan

论文摘要

开发了一个信息理论框架来评估ENSO复杂性的可预测性,这是当代气象学中具有巨大社会影响的核心问题。信息理论推进了量化预测不确定性并允许区分不同ENSO事件的可预测性极限的独特方法。应用框架以计算代表可预测性的信息增益的一个关键步骤是构建一个统计准确的动态模型。为此,最近开发的多尺度随机模型成功地捕获了所观察到的ENSO复杂性的大规模动力学和许多关键的统计特性,并被纳入了信息理论框架中。结果表明,不同的ENSO事件具有非常不同的可预测性限制。除了集合平均值外,整体差异还对可预测性有显着贡献。尽管信息理论表明,预测东太平洋厄尔尼诺斯的发作是具有挑战性的,但它揭示了将强有力的可预测性转化为熟练预测的普遍趋势,即预测许多中部太平洋厄尔尼诺斯大约两年。此外,发现LaNiña事件的强可预测性,与有效的放电过程相对应。在气候变化的情况下,随着背景步行者循环的加强,中太平洋中海面温度的可预测性具有显着的反应,夏季和秋季显着增加。最后,表明高斯近似在计算信息增益方面是准确的,这有助于使用更复杂的模型来研究ENSO可预测性。

An information-theoretic framework is developed to assess the predictability of ENSO complexity, which is a central problem in contemporary meteorology with large societal impacts. The information theory advances a unique way to quantify the forecast uncertainty and allows to distinguish the predictability limit of different ENSO events. One key step in applying the framework to compute the information gain representing the predictability is to build a statistically accurate dynamical model. To this end, a recently developed multiscale stochastic model, which succeeds in capturing both the large-scale dynamics and many crucial statistical properties of the observed ENSO complexity, is incorporated into the information-theoretic framework. It is shown that different ENSO events possess very distinct predictability limits. In addition to the ensemble mean, the ensemble spread also has remarkable contributions to the predictability. While the information theory indicates that predicting the onset of the eastern Pacific El Niños is challenging, it reveals a universal tendency to convert strong predictability to skillful forecast for predicting many central Pacific El Niños about two years in advance. In addition, strong predictability is found for the La Niña events, corresponding to the effective discharge process. In the climate change scenario with the strengthening of the background Walker circulation, the predictability of sea surface temperature in central Pacific has a significant response with a notable increase in summer and fall. Finally, the Gaussian approximation is shown to be accurate in computing the information gain, which facilitates the use of more sophisticated models to study the ENSO predictability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源