论文标题
谨慎地解冻:语义解析模型的空间效率微调
Unfreeze with Care: Space-Efficient Fine-Tuning of Semantic Parsing Models
论文作者
论文摘要
语义解析是将自然语言映射到结构含义表示形式的关键NLP任务。与许多其他NLP任务一样,现在通过微调大型语言模型(PLM)来实现语义解析中的SOTA表现。虽然有效,但在存在多个下游任务的情况下,这种方法效率低下,因为需要分别为每个任务存储PLM所有参数的一组新值。最近的工作探索了将PLM适应下游任务的方法,同时将大多数(或全部)参数冻结。我们研究了两种有希望的技术,前缀调整和偏见 - 术语调整,特别是关于语义解析的。我们在两个不同的语义解析数据集上相互比较它们,并且还将它们与完整和部分微调进行比较,无论是在几次播放和传统的数据设置中。虽然前缀调整对架子上的语义解析任务的表现不佳,但我们通过添加特殊的令牌嵌入来修改它,这会导致非常强大的性能而不会损害参数节省。
Semantic parsing is a key NLP task that maps natural language to structured meaning representations. As in many other NLP tasks, SOTA performance in semantic parsing is now attained by fine-tuning a large pretrained language model (PLM). While effective, this approach is inefficient in the presence of multiple downstream tasks, as a new set of values for all parameters of the PLM needs to be stored for each task separately. Recent work has explored methods for adapting PLMs to downstream tasks while keeping most (or all) of their parameters frozen. We examine two such promising techniques, prefix tuning and bias-term tuning, specifically on semantic parsing. We compare them against each other on two different semantic parsing datasets, and we also compare them against full and partial fine-tuning, both in few-shot and conventional data settings. While prefix tuning is shown to do poorly for semantic parsing tasks off the shelf, we modify it by adding special token embeddings, which results in very strong performance without compromising parameter savings.