论文标题
重要的对象识别,半监督学习以进行自动驾驶
Important Object Identification with Semi-Supervised Learning for Autonomous Driving
论文作者
论文摘要
准确地识别场景中的重要对象是对在复杂而动态的环境中导航的智能代理(例如自动驾驶汽车)的安全和高质量决策和运动计划的先决条件。大多数现有的方法试图采用注意机制来通过各种任务(例如轨迹预测)间接学习与每个对象相关的重要性权重,这些任务并未对重要性估计进行直接监督。相反,我们以明确的方式解决此任务,并将其作为二进制分类(“重要”或“不重要”)问题提出。我们提出了一种新颖的方法,用于在以自我为中心的驾驶场景中,并在场景中的对象上进行关系推理。此外,由于人类注释有限且昂贵,因此我们提出了半监督的学习管道,以使模型能够从无标记的数据中学习。此外,我们建议利用自我车辆行为预测的辅助任务,以进一步提高重要性估计的准确性。在复杂的交通情况下收集的公共自我驾驶数据集(H3D)评估了所提出的方法。进行了一项详细的消融研究,以证明每个模型组件和训练策略的有效性。我们的方法还大量优于基于规则的基线。
Accurate identification of important objects in the scene is a prerequisite for safe and high-quality decision making and motion planning of intelligent agents (e.g., autonomous vehicles) that navigate in complex and dynamic environments. Most existing approaches attempt to employ attention mechanisms to learn importance weights associated with each object indirectly via various tasks (e.g., trajectory prediction), which do not enforce direct supervision on the importance estimation. In contrast, we tackle this task in an explicit way and formulate it as a binary classification ("important" or "unimportant") problem. We propose a novel approach for important object identification in egocentric driving scenarios with relational reasoning on the objects in the scene. Besides, since human annotations are limited and expensive to obtain, we present a semi-supervised learning pipeline to enable the model to learn from unlimited unlabeled data. Moreover, we propose to leverage the auxiliary tasks of ego vehicle behavior prediction to further improve the accuracy of importance estimation. The proposed approach is evaluated on a public egocentric driving dataset (H3D) collected in complex traffic scenarios. A detailed ablative study is conducted to demonstrate the effectiveness of each model component and the training strategy. Our approach also outperforms rule-based baselines by a large margin.