论文标题
经验贝叶斯间隔的覆盖范围
Coverage Properties of Empirical Bayes Intervals
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This note is an invited discussion of the article "Confidence Intervals for Nonparametric Empirical Bayes Analysis" by Ignatiadis and Wager. In this discussion, I review some goals of empirical Bayes data analysis and the contribution of Ignatiadis and Wager. Differences between across-group inference and group-specific inference are discussed. Standard empirical Bayes interval procedures focus on controlling the across-group average coverage rate. However, if group-specific inferences are of primary interest, confidence intervals with group-specific coverage control may be preferable.