论文标题
部分可观测时空混沌系统的无模型预测
Building 3D Generative Models from Minimal Data
论文作者
论文摘要
我们提出了一种从单个3D网格中构造3D对象的生成模型的方法,并通过从2D图像中无监督的低射击学习来改进它们。我们的方法产生了一个3D形态模型,该模型代表了高斯过程的形状和反照率。尽管以前的方法通常已经从多个高质量的3D扫描通过主成分分析构建了3D形态模型,但我们通过单个扫描或模板构建了3D形态模型。正如我们在面域中所证明的那样,这些模型可用于从2D数据(逆图)或3D数据(注册)中推断3D重建。具体来说,我们证明我们的方法可用于仅使用一个3D模板(一个扫描总数,不是一个)来执行面部识别。我们将模型扩展到初步的无监督学习框架,该框架可以使用一个3D模板和少量的2D图像来学习3D面的分布。这种方法还可以为人类婴儿的面部感知的起源提供模型,这些方法似乎从先天的面部模板开始,随后开发了一个灵活的系统,以感知任何新颖面孔的3D结构,从只有2D图像的2D图像,只有相对较少的熟悉面孔的2D图像。
We propose a method for constructing generative models of 3D objects from a single 3D mesh and improving them through unsupervised low-shot learning from 2D images. Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes. Whereas previous approaches have typically built 3D morphable models from multiple high-quality 3D scans through principal component analysis, we build 3D morphable models from a single scan or template. As we demonstrate in the face domain, these models can be used to infer 3D reconstructions from 2D data (inverse graphics) or 3D data (registration). Specifically, we show that our approach can be used to perform face recognition using only a single 3D template (one scan total, not one per person). We extend our model to a preliminary unsupervised learning framework that enables the learning of the distribution of 3D faces using one 3D template and a small number of 2D images. This approach could also provide a model for the origins of face perception in human infants, who appear to start with an innate face template and subsequently develop a flexible system for perceiving the 3D structure of any novel face from experience with only 2D images of a relatively small number of familiar faces.