论文标题
较高同位距离上不同类型的拓扑复杂性
Different Types of Topological Complexity on Higher Homotopic Distance
论文作者
论文摘要
我们首先使用同型距离研究了相对拓扑复杂性的较高版本。我们还介绍了Schwarz属和同位距离上拓扑对的相对拓扑复杂性的广义版。有了这些概念,我们给出了一些不平等,包括拓扑复杂性和Lusternik-Schnirelmann类别,这是拓扑中机器人运动计划研究的最重要部分。最后,通过通过同位距离定义参数化的拓扑复杂性,我们提出了有关此概念较高设置的一些估计。
We first study the higher version of the relative topological complexity by using the homotopic distance. We also introduced the generalized version of the relative topological complexity of a topological pair on both the Schwarz genus and the homotopic distance. With these concepts, we give some inequalities including the topological complexity and the Lusternik-Schnirelmann category, the most important parts of the study of robot motion planning in topology. Finally, by defining the parametrised topological complexity via the homotopic distance, we present some estimates on the higher setting of this concept.