论文标题
什么是随机表面?
What is a random surface?
论文作者
论文摘要
鉴于$ 2N $单位的等边三角形,有很多有限的方法可以将每个边缘粘合到伴侣。我们通过从产生拓扑球的粘结中均匀地采样来获得随机的球形表面。由于$ n $倾向于无穷大,因此这些随机表面(适当缩放)在法律上汇合。极限是“典型”球体形态随机表面,这是布朗运动是一条规范的随机路径。 根据如何指定表面空间和收敛拓扑结构,极限是布朗球体,花生圈,纯liouville量子重力球或一定的保形场理论。所有这些对象都有简洁的定义,并且在某种意义上都是等效的,但是在过去半个世纪中,基于数百次数学和物理论文的基础高度不平凡。 更普遍的是,“以$ d $二维的欧几里得空间中嵌入的连续体随机表面”对于$ d \ in( - \ infty,25)$也很有意义,即使$ d $不是一个正整数;并且可以将其扩展到更高的属表面,具有边界的表面以及带有明显点或其他装饰的表面。 这些结构在数学和物理学中都具有深厚的根源,从经典图理论,复杂分析,概率和表示理论以及弦理论,平面统计物理学,随机矩阵理论和二维量子引力的简单模型。 我们在这里提出了该主题的非正式,座谈级的概述,我们希望新移民和专家都可以访问这一主题。我们的目标是尽可能清晰地回答基本问题。什么是随机表面?
Given $2n$ unit equilateral triangles, there are finitely many ways to glue each edge to a partner. We obtain a random sphere-homeomorphic surface by sampling uniformly from the gluings that produce a topological sphere. As $n$ tends to infinity, these random surfaces (appropriately scaled) converge in law. The limit is a "canonical" sphere-homeomorphic random surface, much the way Brownian motion is a canonical random path. Depending on how the surface space and convergence topology are specified, the limit is the Brownian sphere, the peanosphere, the pure Liouville quantum gravity sphere, or a certain conformal field theory. All of these objects have concise definitions, and are all in some sense equivalent, but the equivalence is highly non-trivial, building on hundreds of math and physics papers over the past half century. More generally, the "continuum random surface embedded in $d$-dimensional Euclidean space" makes a kind of sense for $d \in (-\infty, 25)$ even when $d$ is not a positive integer; and this can be extended to higher genus surfaces, surfaces with boundary, and surfaces with marked points or other decoration. These constructions have deep roots in both mathematics and physics, drawing from classical graph theory, complex analysis, probability and representation theory, as well as string theory, planar statistical physics, random matrix theory and a simple model for two-dimensional quantum gravity. We present here an informal, colloquium-level overview of the subject, which we hope will be accessible to both newcomers and experts. We aim to answer, as cleanly as possible, the fundamental question. What is a random surface?