论文标题
$λ$ -Fleming-Viot流程的瞬时支持传播
Instantaneous support propagation for $Λ$-Fleming-Viot processes
论文作者
论文摘要
对于概率测量值的中性弗莱明 - 维奥特工艺$ z_t $,具有Lévy突变和与一般$λ$ - 粉状相关的重新采样机制,带有多个碰撞,我们证明了支持的瞬时传播。也就是说,在任何固定的时间$ t> 0 $中,概率是Fleming-Viot过程的封闭支持$ s(Z_T)$满足$ s(ν* Z_T)\ subseteq s(z_t)$,其中$ν$是突变过程的lévy量。为了显示这一结果,我们将Donnelly-Kurtz的lookdown粒子表示用于Fleming-Viot过程。
For a probability-measure-valued neutral Fleming-Viot process $Z_t$ with Lévy mutation and resampling mechanism associated to a general $Λ$-coalescent with multiple collisions, we prove the instantaneous propagation of supports. That is, at any fixed time $t>0$, with probability one the closed support $S(Z_t)$ of the Fleming-Viot process satisfies $S(ν* Z_t) \subseteq S(Z_t)$, where $ν$ is the Lévy measure of the mutation process. To show this result, we apply Donnelly-Kurtz's lookdown particle representation for Fleming-Viot process.