论文标题
在激光表面重新放置时,Fe2Val的原位硝化作用,以操纵微观结构和晶体缺陷
In-situ nitriding of Fe2VAl during laser surface remelting to manipulate microstructure and crystalline defects
论文作者
论文摘要
为目标应用定制复杂材料的物理特性,需要优化影响电气和热传输以及机械性能的微观结构和晶体缺陷。激光表面的再铺设可用于修改散装材料的地下微观结构,从而在本地操纵其特性。在这里,我们介绍了一种在反应性氮气中进行重复的方法,以形成氮化物并诱导氮的隔离为结构缺陷。这些缺陷来自全赫斯勒Fe2val化合物的快速固化,这是一种有希望的热电材料。先进的扫描电子显微镜,包括电子通道对比度成像和三维电子反向散射衍射,通过原子探针层析成像进行补充,以研究晶体缺陷的分布及其局部化学成分。我们揭示了高密度的位错,由于其特征是几何必要的脱位,因此它们的特征稳定。在这些位错和低角度的晶界,我们观察到氮和钒的隔离,可以通过在氮气中重复再延纹来增强它们。我们建议将这种方法推广到其他添加剂制造过程,以促进局部隔离和降水状态,从而操纵物理特性。
Tailoring the physical properties of complex materials for targeted applications requires optimizing the microstructure and crystalline defects that influence electrical and thermal transport, and mechanical properties. Laser surface remelting can be used to modify the sub-surface microstructure of bulk materials and hence manipulate their properties locally. Here, we introduce an approach to perform remelting in a reactive nitrogen atmosphere, in order to form nitrides and induce segregation of nitrogen to structural defects. These defects arise from the fast solidification of the full-Heusler Fe2VAl compound that is a promising thermoelectric material. Advanced scanning electron microscopy, including electron channelling contrast imaging and three-dimensional electron backscatter diffraction, is complemented by atom probe tomography to study the distribution of crystalline defects and their local chemical composition. We reveal a high density of dislocations, which are stable due to their character as geometrically necessary dislocations. At these dislocations and low-angle grain boundaries, we observe segregation of nitrogen and vanadium, which can be enhanced by repeated remelting in nitrogen atmosphere. We propose that this approach can be generalized to other additive manufacturing processes to promote local segregation and precipitation states, thereby manipulating physical properties.