论文标题

完全非负旗品种的产品结构和规律定理

Product structure and regularity theorem for totally nonnegative flag varieties

论文作者

Bao, Huanchen, He, Xuhua

论文摘要

Lusztig引入了完全非负标志品种。它具有丰富的组合,几何和谎言理论结构。在本文中,我们在任意Kac-Moody群体的完整旗帜上引入了(新的)$ J $ - 总计阳性,从而推广了(普通)总阳性。 我们表明,$ j $的非负标志品种将细胞分解为完全阳性的$ j $ -Richardson品种。此外,每个完全积极的$ J $ -Richardson Variety都承认了一个有利的分解,称为产品结构。再加上广义的庞加雷猜想,我们证明,每个完全正面的$ j $ -richardson品种的关闭是封闭球的常规CW复合物同构。此外,完整标志上的$ J $ - 总数积极性为(普通)完全非负部分标志品种提供了模型。结果,我们证明,每个(普通)完全正面理查森品种的封闭是一个常规的CW复合物同质形态,可以证实Galashin,Karp和Lam的猜想。

The totally nonnegative flag variety was introduced by Lusztig. It has enriched combinatorial, geometric, and Lie-theoretic structures. In this paper, we introduce a (new) $J$-total positivity on the full flag variety of an arbitrary Kac-Moody group, generalizing the (ordinary) total positivity. We show that the $J$-totally nonnegative flag variety has a cellular decomposition into totally positive $J$-Richardson varieties. Moreover, each totally positive $J$-Richardson variety admits a favorable decomposition, called a product structure. Combined with the generalized Poincare conjecture, we prove that the closure of each totally positive $J$-Richardson variety is a regular CW complex homeomorphic to a closed ball. Moreover, the $J$-total positivity on the full flag provides a model for the (ordinary) totally nonnegative partial flag variety. As a consequence, we prove that the closure of each (ordinary) totally positive Richardson variety is a regular CW complex homeomorphic to a closed ball, confirming conjectures of Galashin, Karp and Lam.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源