论文标题

在一维非温和安德森模型中的扩展状态和局部状态的共存

Coexistence of extended and localized states in one-dimensional non-Hermitian Anderson model

论文作者

Yuce, Cem, Ramezani, Hamidreza

论文摘要

在一维的隐性紧密结合模型中,分隔扩展和局部状态的移动边缘可以出现在适当设计的准晶状电势和耦合常数的情况下。另一方面,在一维安德森晶格中不存在迁移率边缘,因为每当引入随机数时,就会发生定位。在这里,我们考虑了一个非偏置的非热晶格,并表明拓扑状态和局部状态的共存出现在拓扑非平凡的区域中有或没有对角线障碍。我们讨论了迁移率基本上是由于非近焦非晶格的边界条件灵敏度所致。

In one-dimensional Hermitian tight-binding models, mobility edges separating extended and localized states can appear in the presence of properly engineered quasi-periodical potentials and coupling constants. On the other hand, mobility edges don't exist in a one-dimensional Anderson lattice since localization occurs whenever a diagonal disorder through random numbers is introduced. Here, we consider a nonreciprocal non-Hermitian lattice and show that the coexistence of extended and localized states appears with or without diagonal disorder in the topologically nontrivial region. We discuss that the mobility edges appear basically due to the boundary condition sensitivity of the nonreciprocal non-Hermitian lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源