论文标题

在在线订单的服务中:通过机器学习和影响分析来解决网络欺凌

In the Service of Online Order: Tackling Cyber-Bullying with Machine Learning and Affect Analysis

论文作者

Ptaszynski, Michal, Dybala, Pawel, Matsuba, Tatsuaki, Masui, Fumito, Rzepka, Rafal, Araki, Kenji, Momouchi, Yoshio

论文摘要

最近,日本最近的燃烧问题之一是网络欺凌或在线欺骗和欺负人们。在日本学校的非正式网站上特别注意了这个问题。由学校人员和PTA(家长教师协会)成员组成的志愿者已经开始在线巡逻,以在网络论坛和博客中发现恶意内容。实际上,在线巡逻队假设阅读整个网络内容,这是一项难以手动执行的任务。在本文中,我们介绍了一项研究,旨在帮助PTA成员更有效地在线巡逻。我们旨在开发一套可以自动检测恶意条目并将其报告给PTA成员的工具。首先,我们从非正式学校网站收集了网络欺凌数据。然后,我们通过两种方式对这些数据进行了分析。首先,我们通过多方面的情感分析系统分析了条目,以便找到网络欺凌的独特功能,并将其应用于机器学习分类器。其次,我们应用了基于SVM的机器学习方法来训练分类器以检测网络欺凌。该系统能够以平衡的F-评分为88.2%的网络欺凌条目进行分类。

One of the burning problems lately in Japan has been cyber-bullying, or slandering and bullying people online. The problem has been especially noticed on unofficial Web sites of Japanese schools. Volunteers consisting of school personnel and PTA (Parent-Teacher Association) members have started Online Patrol to spot malicious contents within Web forums and blogs. In practise, Online Patrol assumes reading through the whole Web contents, which is a task difficult to perform manually. With this paper we introduce a research intended to help PTA members perform Online Patrol more efficiently. We aim to develop a set of tools that can automatically detect malicious entries and report them to PTA members. First, we collected cyber-bullying data from unofficial school Web sites. Then we performed analysis of this data in two ways. Firstly, we analysed the entries with a multifaceted affect analysis system in order to find distinctive features for cyber-bullying and apply them to a machine learning classifier. Secondly, we applied a SVM based machine learning method to train a classifier for detection of cyber-bullying. The system was able to classify cyber-bullying entries with 88.2% of balanced F-score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源