论文标题

33个解剖学的普遍分割

Universal Segmentation of 33 Anatomies

论文作者

Liu, Pengbo, Deng, Yang, Wang, Ce, Hui, Yuan, Li, Qian, Li, Jun, Luo, Shiwei, Sun, Mengke, Quan, Quan, Yang, Shuxin, Hao, You, Xiao, Honghu, Zhao, Chunpeng, Wu, Xinbao, Zhou, S. Kevin

论文摘要

在本文中,我们提出了一种学习单个模型的方法,该模型普遍划分了33个解剖结构,包括椎骨,骨盆骨骼和腹部器官。我们的模型建设必须应对以下挑战。首先,虽然是从大规模,完全注重的数据集中学习这样的模型的理想选择,但实际上很难策划这样的数据集。因此,我们求助于多个数据集的联合,每个数据集都包含部分标记的图像。其次,沿着部分标记线,我们为脊柱分析社区的好处,CTSPine1K,拥有超过1,000个3D卷和超过11K注释的椎骨,为脊柱分析社区的好处,贡献了一个开源的大规模椎骨分割数据集。第三,在3D医疗图像分割任务中,由于GPU内存的限制,我们总是使用裁剪的补丁作为输入而训练模型,而不是整个3D卷,这限制了要学习的上下文信息的数量。为此,我们提出了一个交叉斑块变压器模块,以在相邻斑块中融合更多信息,从而扩大聚合的接收场以改善分割性能。这对于分割细长的脊柱尤其重要。基于7个部分标记的数据集,共同包含大约2,800个3D卷,我们成功地学习了这样的通用模型。最后,我们在多个开源数据集上评估了通用模型,证明我们的模型具有良好的概括性能,并有可能成为下游任务的坚实基础。

In the paper, we present an approach for learning a single model that universally segments 33 anatomical structures, including vertebrae, pelvic bones, and abdominal organs. Our model building has to address the following challenges. Firstly, while it is ideal to learn such a model from a large-scale, fully-annotated dataset, it is practically hard to curate such a dataset. Thus, we resort to learn from a union of multiple datasets, with each dataset containing the images that are partially labeled. Secondly, along the line of partial labelling, we contribute an open-source, large-scale vertebra segmentation dataset for the benefit of spine analysis community, CTSpine1K, boasting over 1,000 3D volumes and over 11K annotated vertebrae. Thirdly, in a 3D medical image segmentation task, due to the limitation of GPU memory, we always train a model using cropped patches as inputs instead a whole 3D volume, which limits the amount of contextual information to be learned. To this, we propose a cross-patch transformer module to fuse more information in adjacent patches, which enlarges the aggregated receptive field for improved segmentation performance. This is especially important for segmenting, say, the elongated spine. Based on 7 partially labeled datasets that collectively contain about 2,800 3D volumes, we successfully learn such a universal model. Finally, we evaluate the universal model on multiple open-source datasets, proving that our model has a good generalization performance and can potentially serve as a solid foundation for downstream tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源