论文标题

教机器人跨越功能表达运动的空间

Teaching Robots to Span the Space of Functional Expressive Motion

论文作者

Sripathy, Arjun, Bobu, Andreea, Li, Zhongyu, Sreenath, Koushil, Brown, Daniel S., Dragan, Anca D.

论文摘要

我们的目标是使机器人能够以情感方式执行功能任务,无论是响应用户的情绪状态还是表达其信心水平。先前的工作提出了从用户反馈中每个目标情感的学习独立成本功能,以便机器人可以在遇到的任何情况下将其与任务和环境特定目标一起优化。但是,在建模多种情绪并且无法推广到新的情绪时,这种方法效率低下。在这项工作中,我们利用了一个事实,即情绪并非彼此独立:它们是通过价值 - 主力主导(VAD)的潜在空间相关的。我们的关键想法是学习一个模型,以使用用户标签映射到VAD上。考虑到轨迹的映射与目标VAD之间的距离,可以使该单个模型代表所有情绪的成本功能。结果1)所有用户反馈都可以有助于学习每种情绪; 2)机器人可以为空间中的任何情绪生成轨迹,而不仅仅是少数预定义的轨迹; 3)机器人可以通过将其映射到目标VAD来对用户生成的自然语言进行情感响应。我们介绍了一种交互式学习将轨迹映射到该潜在空间并在模拟和用户研究中对其进行测试的方法。在实验中,我们使用了一个简单的真空机器人以及Cassie Biped。

Our goal is to enable robots to perform functional tasks in emotive ways, be it in response to their users' emotional states, or expressive of their confidence levels. Prior work has proposed learning independent cost functions from user feedback for each target emotion, so that the robot may optimize it alongside task and environment specific objectives for any situation it encounters. However, this approach is inefficient when modeling multiple emotions and unable to generalize to new ones. In this work, we leverage the fact that emotions are not independent of each other: they are related through a latent space of Valence-Arousal-Dominance (VAD). Our key idea is to learn a model for how trajectories map onto VAD with user labels. Considering the distance between a trajectory's mapping and a target VAD allows this single model to represent cost functions for all emotions. As a result 1) all user feedback can contribute to learning about every emotion; 2) the robot can generate trajectories for any emotion in the space instead of only a few predefined ones; and 3) the robot can respond emotively to user-generated natural language by mapping it to a target VAD. We introduce a method that interactively learns to map trajectories to this latent space and test it in simulation and in a user study. In experiments, we use a simple vacuum robot as well as the Cassie biped.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源