论文标题

Viterbo的猜想是蠕虫问题

Viterbo's conjecture as a worm problem

论文作者

Rudolf, Daniel

论文摘要

在本文中,我们将Viterbo的猜想从象征性的几何形状到蠕虫问题的Minkowski版本,这是受到众所周知的Moser Worm Warress Insuper的启发。对于Lagrangian产品的特殊情况,这种关系提供了与收缩的Minkowski台球不平等和Mahler从凸几何形状的猜想的联系。此外,我们使用上述关系将Viterbo的猜想转移到了长期以来的开放式Wetzel问题的猜想中,这也可以作为收缩期欧几里得台球不平等表示,我们讨论一种算法方法,以便找到一种新的下限。最后,我们指出,维特尔博的猜想与Minkowski蠕虫问题之间的上述关系与Bellmann丢失的森林问题与原始Moser蠕虫问题之间的已知关系具有结构相似性。

In this paper, we relate Viterbo's conjecture from symplectic geometry to Minkowski versions of worm problems which are inspired by the well-known Moser worm problem from geometry. For the special case of Lagrangian products this relation provides a connection to systolic Minkowski billiard inequalities and Mahler's conjecture from convex geometry. Moreover, we use the above relation in order to transfer Viterbo's conjecture to a conjecture for the longstanding open Wetzel problem which also can be expressed as a systolic Euclidean billiard inequality and for which we discuss an algorithmic approach in order to find a new lower bound. Finally, we point out that the above mentioned relation between Viterbo's conjecture and Minkowski worm problems has a structural similarity to the known relationship between Bellmann's lost-in-a-forest problem and the original Moser worm problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源