论文标题

洛伦兹路径积分中的复杂马鞍和欧几里得虫洞

Complex Saddles and Euclidean Wormholes in the Lorentzian Path Integral

论文作者

Loges, Gregory J., Shiu, Gary, Sudhir, Nidhi

论文摘要

我们研究了4D轴心重力的Lorentzian路径积分的复杂马鞍及其在3型通量方面的双重描述,其中包括Giddings-Strominger Euclidean虫洞。过渡幅度是使用Lorentzian路径积分和Picard-Lefschetz理论计算的。鞍座的数量和性质被证明是在可能会出现的双腹操作员的存在下质量上改变的,例如,由于考虑了更高的能力过渡。我们还分析了3型图片中Giddings-Strominger虫洞的稳定性,在那里我们发现它代表了重力路径积分的触及触及稳定的欧几里得鞍座。这引起了质疑在量子重力理论中这种解决方案的最终命运。

We study complex saddles of the Lorentzian path integral for 4D axion gravity and its dual description in terms of a 3-form flux, which include the Giddings-Strominger Euclidean wormhole. Transition amplitudes are computed using the Lorentzian path integral and with the help of Picard-Lefschetz theory. The number and nature of saddles is shown to qualitatively change in the presence of a bilocal operator that could arise, for example, as a result of considering higher-topology transitions. We also analyze the stability of the Giddings-Strominger wormhole in the 3-form picture, where we find that it represents a perturbatively stable Euclidean saddle of the gravitational path integral. This calls into question the ultimate fate of such solutions in an ultraviolet-complete theory of quantum gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源