论文标题
NUQ:通过不确定性差异定量扩散MRI的噪声度量
NUQ: A Noise Metric for Diffusion MRI via Uncertainty Discrepancy Quantification
论文作者
论文摘要
扩散MRI(DMRI)是对组织微体系结构敏感的唯一非侵入性技术,进而可用于重建组织微观结构和白质途径。 DMRI中低信噪比的比率降低了此类任务的准确性。如今,噪声的特征主要是对残差图和估计标准偏差的目视检查。但是,仅基于此类定性评估,很难估算噪声对下游任务的影响。为了解决这个问题,我们引入了一种新颖的指标,噪声不确定性定量(NUQ),以在没有地面真相参考图像的情况下进行定量图像质量分析。 NUQ使用最近的贝叶斯公式DMRI模型来估计微观结构测量的不确定性。具体而言,NUQ使用最大的平均差异度量来通过比较从微结构测量的后验分布进行比较来计算汇总质量得分。我们表明,NUQ允许对噪声进行细粒度的分析,从而捕获视觉上无法察觉的细节。我们在实际数据集上进行定性和定量比较,表明NUQ在不同的DeNoisers和Acquisitions中产生一致的分数。最后,通过在精神分裂症和对照组中使用NUQ,我们量化了降级对群体差异的实质影响。
Diffusion MRI (dMRI) is the only non-invasive technique sensitive to tissue micro-architecture, which can, in turn, be used to reconstruct tissue microstructure and white matter pathways. The accuracy of such tasks is hampered by the low signal-to-noise ratio in dMRI. Today, the noise is characterized mainly by visual inspection of residual maps and estimated standard deviation. However, it is hard to estimate the impact of noise on downstream tasks based only on such qualitative assessments. To address this issue, we introduce a novel metric, Noise Uncertainty Quantification (NUQ), for quantitative image quality analysis in the absence of a ground truth reference image. NUQ uses a recent Bayesian formulation of dMRI models to estimate the uncertainty of microstructural measures. Specifically, NUQ uses the maximum mean discrepancy metric to compute a pooled quality score by comparing samples drawn from the posterior distribution of the microstructure measures. We show that NUQ allows a fine-grained analysis of noise, capturing details that are visually imperceptible. We perform qualitative and quantitative comparisons on real datasets, showing that NUQ generates consistent scores across different denoisers and acquisitions. Lastly, by using NUQ on a cohort of schizophrenics and controls, we quantify the substantial impact of denoising on group differences.