论文标题

卡瓦哈拉方程:循环解决方案加入周期性波

The Kawahara Equation: Traveling Wave Solutions Joining Periodic Waves

论文作者

Sprenger, Patrick, Bridges, Thomas J., Shearer, Michael

论文摘要

卡瓦哈拉方程是一种弱的非线性长波模型,当领先阶分散效应与下一个阶校正平衡时,它会出现。 Kawahara方程的行驶波解决方案满足了四阶的普通微分方程,其中波动速度是参数。第四阶方程式具有哈密顿结构,并接受了一个单相周期性解决方案的两参数,其速度不同和哈密顿量。一组跳跃条件是针对同样速度和哈密顿量的周期性解决方案对成对的。这些是存在于$ \ pm \ infty $的周期性轨道渐近轨道的行进波的必要条件。分叉理论和参数延续用于构建跳跃条件的多个解决方案分支。对于每对兼容的周期溶液,代表行动波的杂斜轨道是根据周期轨道稳定和不稳定的歧管的交汇处构建的。每个分支都终止于平衡到周期溶液,其中平衡是连接到相关周期溶液的孤立波的背景。

The Kawahara equation is a weakly nonlinear long-wave model of dispersive waves that emerges when leading order dispersive effects are in balance with the next order correction. Traveling wave solutions of the Kawahara equation satisfy a fourth-order ordinary differential equation in which the traveling wave speed is a parameter. The fourth order equation has Hamiltonian structure and admits a two-parameter family of single-phase periodic solutions with varying speed and Hamiltonian. A set of jump conditions is derived for pairs of periodic solutions with equal speed and Hamiltonian. These are necessary conditions for the existence of traveling waves that asymptote to the periodic orbits at $\pm \infty$. Bifurcation theory and parameter continuation are used to construct multiple solution branches of the jump conditions. For each pair of compatible periodic solutions, the heteroclinic orbit representing the traveling wave is constructed from the intersection of stable and unstable manifolds of the periodic orbits. Each branch terminates at an equilibrium-to-periodic solution in which the equilibrium is the background for a solitary wave that connects to the associated periodic solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源