论文标题

具有非线性预测的ADPCM

ADPCM with nonlinear prediction

论文作者

Faundez-Zanuy, Marcos, Oliva-Suarez, Oscar

论文摘要

许多语音编码器基于线性预测编码(LPC),但是使用LPC无法建模语音信号中存在的非线性。因此,非线性技术越来越感兴趣。在本文中,我们基于神经网的非线性预测因子讨论了ADPCM方案,在SEGSNR中,与经典方法相比,该方案在SEGSNR中提高1-2.5db。本文将讨论阻碍和样本自适应预测。

Many speech coders are based on linear prediction coding (LPC), nevertheless with LPC is not possible to model the nonlinearities present in the speech signal. Because of this there is a growing interest for nonlinear techniques. In this paper we discuss ADPCM schemes with a nonlinear predictor based on neural nets, which yields an increase of 1-2.5dB in the SEGSNR over classical methods. This paper will discuss the block-adaptive and sample-adaptive predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源