论文标题
带有面部动作单元的自动面部麻痹估计
Automatic Facial Paralysis Estimation with Facial Action Units
论文作者
论文摘要
面瘫是单方面的面部神经无力或因未知原因而快速发作的麻痹。自动估计面部麻痹的严重性可能有助于诊断和治疗世界各地患者的诊断和治疗。在这项工作中,我们开发并尝试了一个新型模型,以估计面部麻痹的严重程度。为此,将有效的面部动作单元(AU)检测技术纳入了我们的模型中,AUS指的是一组独特的面部肌肉运动,用于描述几乎所有解剖上可能的面部表达。在本文中,我们提出了一种新型的自适应局部全球关系网络(ALGRNET),用于面部AU检测,并将其用于对面部麻痹的严重程度进行分类。 Algrnet主要由三个主要的新颖结构组成:(i)一个自适应区域学习模块,该模块根据检测到的地标学习自适应肌肉区域; (ii)一个跳过bilstm,它模拟了局部AUS之间的潜在关系; (iii)一个功能融合和精炼模块,调查了本地和全球面部之间的互补性。在两个AU基准测试(即BP4D和DISFA)上的定量结果证明了我们的Algrnet可以达到有希望的AU检测准确性。我们进一步证明了其在面部瘫痪估计中的应用,通过将Algrnet迁移到由医学专业人员收集和注释的面部瘫痪数据集中。
Facial palsy is unilateral facial nerve weakness or paralysis of rapid onset with unknown causes. Automatically estimating facial palsy severeness can be helpful for the diagnosis and treatment of people suffering from it across the world. In this work, we develop and experiment with a novel model for estimating facial palsy severity. For this, an effective Facial Action Units (AU) detection technique is incorporated into our model, where AUs refer to a unique set of facial muscle movements used to describe almost every anatomically possible facial expression. In this paper, we propose a novel Adaptive Local-Global Relational Network (ALGRNet) for facial AU detection and use it to classify facial paralysis severity. ALGRNet mainly consists of three main novel structures: (i) an adaptive region learning module that learns the adaptive muscle regions based on the detected landmarks; (ii) a skip-BiLSTM that models the latent relationships among local AUs; and (iii) a feature fusion&refining module that investigates the complementary between the local and global face. Quantitative results on two AU benchmarks, i.e., BP4D and DISFA, demonstrate our ALGRNet can achieve promising AU detection accuracy. We further demonstrate the effectiveness of its application to facial paralysis estimation by migrating ALGRNet to a facial paralysis dataset collected and annotated by medical professionals.