论文标题
部分可观测时空混沌系统的无模型预测
Practitioner Motives to Use Different Hyperparameter Optimization Methods
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Programmatic hyperparameter optimization (HPO) methods, such as Bayesian optimization and evolutionary algorithms, are highly sample-efficient in identifying optimal hyperparameter configurations for machine learning (ML) models. However, practitioners frequently use less efficient methods, such as grid search, which can lead to under-optimized models. We suspect this behavior is driven by a range of practitioner-specific motives. Practitioner motives, however, still need to be clarified to enhance user-centered development of HPO tools. To uncover practitioner motives to use different HPO methods, we conducted 20 semi-structured interviews and an online survey with 49 ML experts. By presenting main goals (e.g., increase ML model understanding) and contextual factors affecting practitioners' selection of HPO methods (e.g., available computer resources), this study offers a conceptual foundation to better understand why practitioners use different HPO methods, supporting development of more user-centered and context-adaptive HPO tools in automated ML.