论文标题
局部耦合波方程与局部开尔文 - voigt阻尼的稳定性结果:阻尼和耦合系数支撑的情况是脱节
Stability results of locally coupled wave equations with local Kelvin-Voigt damping: Cases when the supports of damping and coupling coefficients are disjoint
论文作者
论文摘要
在本文中,我们研究了局部耦合波方程与局部开尔文 - voigt阻尼/阻尼的直接/间接稳定性,并假设阻尼和耦合系数的支撑是脱节的。首先,我们证明了某些一个维度耦合系统的稳定性,强大的稳定性和多项式稳定性。此外,在某些几何控制条件下,我们证明了在多维情况下的适合性和强稳定性。
In this paper, we study the direct/indirect stability of locally coupled wave equations with local Kelvin-Voigt dampings/damping and by assuming that the supports of the dampings and the coupling coefficients are disjoint. First, we prove the well-posedness, strong stability, and polynomial stability for some one dimensional coupled systems. Moreover, under some geometric control condition, we prove the well-posedness and strong stability in the multi-dimensional case.