论文标题
低度多核能
Low-Degree Multicalibration
论文作者
论文摘要
作为算法公平性的概念,多核算被证明是一个强大而多才多艺的概念,其影响远远超出了其最初的意图。这种严格的概念 - 预测在一系列丰富的相交亚群中得到了很好的校准 - 以成本为代价提供了强大的保证:学习多校准预测指标的计算和样本复杂性很高,并且随着类标签的数量而成倍增长。相比之下,可以更有效地实现多辅助性的放松概念,但是,仅仅假设单独使用多学历,则无法保证许多最可取的多核能概念。这种张力提出了一个关键问题:我们能否以多核式式保证来学习预测因素,以与多辅助性相称的成本? 在这项工作中,我们定义并启动了低度多核的研究。低度多核能定义了越来越强大的多组公平性概念的层次结构,这些概念跨越了多辅助性和在极端情况下进行多核的原始表述。我们的主要技术贡献表明,与公平性和准确性相关的多核算的关键特性实际上表现为低度特性。重要的是,我们表明,低度的数学振动可以比完整的多核电更有效。在多级设置中,实现低度多核的样品复杂性在完整的多核电上呈指数级(在类中)提高。我们的工作提供了令人信服的证据,表明低度多核能代表了一个最佳位置,将计算效率和样本效率与强大的公平性和准确性保证配对。
Introduced as a notion of algorithmic fairness, multicalibration has proved to be a powerful and versatile concept with implications far beyond its original intent. This stringent notion -- that predictions be well-calibrated across a rich class of intersecting subpopulations -- provides its strong guarantees at a cost: the computational and sample complexity of learning multicalibrated predictors are high, and grow exponentially with the number of class labels. In contrast, the relaxed notion of multiaccuracy can be achieved more efficiently, yet many of the most desirable properties of multicalibration cannot be guaranteed assuming multiaccuracy alone. This tension raises a key question: Can we learn predictors with multicalibration-style guarantees at a cost commensurate with multiaccuracy? In this work, we define and initiate the study of Low-Degree Multicalibration. Low-Degree Multicalibration defines a hierarchy of increasingly-powerful multi-group fairness notions that spans multiaccuracy and the original formulation of multicalibration at the extremes. Our main technical contribution demonstrates that key properties of multicalibration, related to fairness and accuracy, actually manifest as low-degree properties. Importantly, we show that low-degree multicalibration can be significantly more efficient than full multicalibration. In the multi-class setting, the sample complexity to achieve low-degree multicalibration improves exponentially (in the number of classes) over full multicalibration. Our work presents compelling evidence that low-degree multicalibration represents a sweet spot, pairing computational and sample efficiency with strong fairness and accuracy guarantees.