论文标题
具有偶性相互作用的Ising模型中的周期性条纹状态
Periodic striped states in Ising models with dipolar interactions
论文作者
论文摘要
我们回顾了确定与最近邻居铁磁和偶极相互作用的2D ISING模型的基态的问题,并证明了一个新的结果,这支持了以下猜想:如果最近的邻居耦合$ j $足够大,则基态为周期性和“条纹”。更确切地说,我们通过在域壁是水平和/或垂直直线的任意集合的状态类别中构造最小化的状态类别中,证明了猜想的限制版本。
We review the problem of determining the ground states of 2D Ising models with nearest neighbor ferromagnetic and dipolar interactions, and prove a new result supporting the conjecture that, if the nearest neighbor coupling $J$ is sufficiently large, the ground states are periodic and `striped'. More precisely, we prove a restricted version of the conjecture, by constructing the minimizers within the variational class of states whose domain walls are arbitrary collections of horizontal and/or vertical straight lines.