论文标题
记住的核心和遗忘物品:删除的supdodular最大化
Coresets remembered and items forgotten: submodular maximization with deletions
论文作者
论文摘要
近年来,我们目睹了下义优化方法的发展,这些方法是由于在现实世界中数据科学问题中的基本功能的广泛适用性所激发的。在本文中,我们通过考虑出意外删除的鲁棒性次管法最大化的问题来为这项工作做出了贡献,这可能是由于隐私问题或用户偏好而导致的。具体而言,我们考虑算法必须记住的最小项目数量,以实现针对最多$ d $项目的对抗删除的非平地近似保证。我们将算法在对抗删除之前必须保留的一组项目作为删除式核心。 我们的理论贡献是两个方面。首先,我们提出了一种单次流媒体算法,该算法产生了$(1-2ε)/(4p)$ - 在一般p-摩托医生约束下最大化非降低的下二个功能的近似值,并且需要大小$ k + d/ε$的核心,其中$ k $是可行的最大尺寸。据我们所知,这是第一项实现(渐近)最佳核心的工作,因为在$ d $中的尺寸sublinear的核心中不可能使用恒定的因子近似。其次,我们设计了一种有效的离线算法,该算法可以通过尺寸$ o(d \ log(k)/ε)$的核心来确保更强的近似值。我们还展示了在现实生活中提出的算法的出色经验性能。
In recent years we have witnessed an increase on the development of methods for submodular optimization, which have been motivated by the wide applicability of submodular functions in real-world data-science problems. In this paper, we contribute to this line of work by considering the problem of robust submodular maximization against unexpected deletions, which may occur due to privacy issues or user preferences. Specifically, we consider the minimum number of items an algorithm has to remember, in order to achieve a non-trivial approximation guarantee against adversarial deletion of up to $d$ items. We refer to the set of items that an algorithm has to keep before adversarial deletions as a deletion-robust coreset. Our theoretical contributions are two-fold. First, we propose a single-pass streaming algorithm that yields a $(1-2ε)/(4p)$-approximation for maximizing a non-decreasing submodular function under a general p-matroid constraint and requires a coreset of size $k + d/ε$, where $k$ is the maximum size of a feasible solution. To the best of our knowledge, this is the first work to achieve an (asymptotically) optimal coreset, as no constant-factor approximation is possible with a coreset of size sublinear in $d$. Second, we devise an effective offline algorithm that guarantees stronger approximation ratios with a coreset of size $O(d \log(k)/ε)$. We also demonstrate the superior empirical performance of the proposed algorithms in real-life applications.