论文标题
太阳光球中水平po循环的重要性
The importance of horizontal Poynting flux in the solar photosphere
论文作者
论文摘要
太阳下部大气中的电磁能通量是描述太阳大气的能量平衡的关键工具。当前对太阳大气中能量通量的研究主要集中于通过光球的垂直电磁通量,忽略了其他方向上的Poynting通量及其对局部加热的可能贡献。基于对安静的(冠状孔)气氛的逼真的三面模拟,我们发现光球中的总电磁能通量主要发生与光球平行,并集中在沿着跨间泳道的小区域。因此,可以根据只能从观测值中迅速检索的变量(即小型磁元素的水平速度及其纵向磁通量)来定义该能量通量的代理。我们的代理准确地描述了模拟中的实际poynting通量分布,电磁能通量达到$ 10^{10} $ erg \,cm $^{ - 2} $ \,s $^{ - 1} $。为了验证我们的发现,我们将分析扩展到日出/IMAX数据。首先,我们表明,双佛罗斯特实际描述了光球静态区域,因为模拟为视线磁通量和水平速度场提供了类似的分布。其次,我们发现模拟的光球和观察数据非常相似的水平po循环助理代理分布。我们的结果还表明,观测值中的水平po液磁通量比以前观察估计的垂直电磁通量大得多。因此,我们的分析证实,光球中的电磁能通量主要是水平的,在沿晶间泳道的局部区域中最为强烈。
The electromagnetic energy flux in the lower atmosphere of the Sun is a key tool to describe the energy balance of the solar atmosphere. Current investigations on energy flux in the solar atmosphere focus primarily on the vertical electromagnetic flux through the photosphere, ignoring the Poynting flux in other directions and its possible contributions to local heating. Based on a realistic Bifrost simulation of a quiet-Sun (coronal hole) atmosphere, we find that the total electromagnetic energy flux in the photosphere occurs mainly parallel to the photosphere, concentrating in small regions along intergranular lanes. Thereby, it was possible to define a proxy for this energy flux based on only variables that can be promptly retrieved from observations, namely, horizontal velocities of the small-scale magnetic elements and their longitudinal magnetic flux. Our proxy accurately describes the actual Poynting flux distribution in the simulations, with the electromagnetic energy flux reaching $10^{10}$ erg\,cm$^{-2}$\,s$^{-1}$. To validate our findings, we extended the analysis to SUNRISE/IMaX data. First, we show that Bifrost realistically describes photospheric quiet-Sun regions, as the simulation presents similar distributions for line-of-sight magnetic flux and horizontal velocity field. Second, we found very similar horizontal Poynting flux proxy distributions for the simulated photosphere and observational data. Our results also indicate that the horizontal Poynting flux in the observations is considerably larger than the vertical electromagnetic flux from previous observational estimates. Therefore, our analysis confirms that the electromagnetic energy flux in the photosphere is mainly horizontal and is most intense in localized regions along intergranular lanes.