论文标题

机器学习的原子间潜力,用于铁电KNBO3钙钛矿的分子动力学模拟

Machine-learning interatomic potential for molecular dynamics simulation of ferroelectric KNbO3 perovskite

论文作者

Thong, Hao-Cheng, Wang, XiaoYang, Wang, Han, Zhang, Linfeng, Wang, Ke, Xu, Ben

论文摘要

数十年来,铁电钙钛矿已普遍存在在压电设备中使用,其中最近已证明,生态友好的无铅(K,NA)基于NBO3的材料是可持续发展的绝佳候选者。分子动力学是一种用于研究铁电钙钛矿动力学特性的多功能理论计算方法。然而,由于原子间潜能的常规构建相当困难和效率低下,因此铁电钙晶的分子动力学模拟仅限于简单系统。在本研究中,我们通过使用深层神经网络模型来构建KNBO3(作为(K,Na)NBO3)的代表性系统的机器学习间潜能。在训练数据集中包括第一原理计算数据可确保原子间电位的量子力学精度。基于机器学习的原子间电位的分子动力学与第一原理计算显示出良好的一致性,该计算可以准确预测多个基本特性,例如原子力,能量,能量,弹性特性和声子分散。此外,原子间电位在域壁和温度依赖性相变的模拟中表现出令人满意的性能。基于机器学习的原子间潜力的构建可能会转移到其他铁电钙钛矿上,因此使铁电理论研究受益。

Ferroelectric perovskites have been ubiquitously applied in piezoelectric devices for decades, among which, eco-friendly lead-free (K,Na)NbO3-based materials have been recently demonstrated to be an excellent candidate for sustainable development. Molecular dynamics is a versatile theoretical calculation approach for the investigation of the dynamical properties of ferroelectric perovskites. However, molecular dynamics simulation of ferroelectric perovskites has been limited to simple systems, since the conventional construction of interatomic potential is rather difficult and inefficient. In the present study, we construct a machine-learning interatomic potential of KNbO3 (as a representative system of (K,Na)NbO3) by using a deep neural network model. Including first-principles calculation data into the training dataset ensures the quantum-mechanics accuracy of the interatomic potential. The molecular dynamics based on machine-learning interatomic potential shows good agreement with the first-principles calculations, which can accurately predict multiple fundamental properties, e.g., atomic force, energy, elastic properties, and phonon dispersion. In addition, the interatomic potential exhibits satisfactory performance in the simulation of domain wall and temperature-dependent phase transition. The construction of interatomic potential based on machine learning could potentially be transferred to other ferroelectric perovskites and consequently benefits the theoretical study of ferroelectrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源