论文标题

修改的卷积正交正交与基本溶液和盖尔金BEM的方法相结合的声学散射方法

A modified convolution quadrature combined with the method of fundamental solutions and Galerkin BEM for acoustic scattering

论文作者

Aldahham, Ebraheem, Banjai, Lehel

论文摘要

我们描述了一种基于解决方案的时域边界积分表示,用于解决声学外部散射问题的数值方法。作为所得时间域边界积分方程的空间离散化,我们使用基本解决方案(MFS)的方法或Galerkin边界元素方法(BEM)。随着时间的流逝,我们基于A稳定线性多步法方法或修改后的CQ方案应用标准卷积正交(CQ)。众所周知,针对双曲线问题的标准低阶CQ方案遭受了强大的耗散和分散性能。修改后的方案旨在避免这些属性。我们仔细描述了修改后的方案及其实施,由于突出了不同的空间离散性而导致的差异。与标准方案相比

We describe a numerical method for the solution of acoustic exterior scattering problems based on the time-domain boundary integral representation of the solution. As the spatial discretization of the resulting time-domain boundary integral equation we use either the method of fundamental solutions (MFS) or the Galerkin boundary element method (BEM). In time we apply either a standard convolution quadrature (CQ) based on an A-stable linear multistep method or a modified CQ scheme. It is well-known that the standard low-order CQ schemes for hyperbolic problems suffer from strong dissipation and dispersion properties. The modified scheme is designed to avoid these properties. We give a careful description of the modified scheme and its implementation with differences due to different spatial discretizations highlighted. Numerous numerical experiments illustrate the effectiveness of the modified scheme and dramatic improvement with errors up to two orders of magnitude smaller in comparison with the standard scheme

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源