论文标题
与组成分布式表示形式的整数分解
Integer Factorization with Compositional Distributed Representations
论文作者
论文摘要
在本文中,我们使用用向量符号体系结构形成的分布式表示形式提出了整数分解的方法。该方法以一种可以使用神经网络来解决的方式进行整数分解,并有可能在平行的神经形态硬件上实现。我们介绍了一种编码分布式向量空间中数字的方法,并解释了谐振网络如何解决整数分解问题。我们通过测量分解精度与问题的规模来评估半率分解的方法。我们还展示了所提出的方法如何推广超出半阶段的分解;原则上,它可用于分解任何复合数。这项工作说明了如何在向量符号体系结构的框架内提出和解决众所周知的组合搜索问题,并为解决其他域中的类似困难问题打开了大门。
In this paper, we present an approach to integer factorization using distributed representations formed with Vector Symbolic Architectures. The approach formulates integer factorization in a manner such that it can be solved using neural networks and potentially implemented on parallel neuromorphic hardware. We introduce a method for encoding numbers in distributed vector spaces and explain how the resonator network can solve the integer factorization problem. We evaluate the approach on factorization of semiprimes by measuring the factorization accuracy versus the scale of the problem. We also demonstrate how the proposed approach generalizes beyond the factorization of semiprimes; in principle, it can be used for factorization of any composite number. This work demonstrates how a well-known combinatorial search problem may be formulated and solved within the framework of Vector Symbolic Architectures, and it opens the door to solving similarly difficult problems in other domains.