论文标题

超敏感性感测的单原子机械光传感器

A single-atom level mechano-optical transducer for ultrasensitive force sensing

论文作者

Liu, Yang, Lu, Pengfei, Rao, Xinxin, Wu, Hao, Wang, Kunxu, Lao, Qifeng, Bian, Ji, Zhu, Feng, Luo, Le

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Using light as a probe to detect a mechanical motion is one of the most successful experimental approaches in physics. The history of mechanical sensing based on the reflection, refraction and scattering of light dates back to the 16th century, where in the Cavendish experiment, the angle of rotation induced by the gravitational force is measured by the deflection of a light beam reflected from a mirror attached to the suspension. In modern science, mechano-optical transducers are such devices that could detect, measure and convert a force or displacement signal to an optical one, and are widely used for force detection. Especially, ultraweak force sensor with ultrahigh spatial resolution is highly demanded for detecting force anomaly in surface science, biomolecule imaging, and atomtronics. Here we show a novel scheme using a single trapped ion as a mechano-optical transduction. This method utilizes the force-induced micromotion, converting the micromotion to a time-resolved fluorescence signal, in which the ion's excess micromotion coupled to the Doppler shift of the scattered photons. We demonstrate the measurement sensitivity about 600 $\textrm{zN}/\sqrt{\textrm{Hz}}$ (1 $\textrm{zN} =10^{-21}$N). By alternating the detection laser beam in all three dimensions, the amplitude and the direction of a vector force can be precisely determined, constituting a 3D force sensor. This mechano-optical transducer provides high sensitivity with spatial resolution in single-atom level, enabling the applications in material industry and the search for possible exotic spin-dependent interactions that beyond the standard model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源