论文标题

洪水危害模型使用多解决模型输出

Flood hazard model calibration using multiresolution model output

论文作者

Roth, Samantha, Lee, Ben Seiyon, Sharma, Sanjib, Hosseini-Shakib, Iman, Keller, Klaus, Haran, Murali

论文摘要

河流洪水对许多社区构成了相当大的风险。改善洪水危害预测有可能为洪水风险管理策略的设计和实施提供信息。当前的洪水危害投影尚不确定,尤其是由于不确定的模型参数。校准方法使用观测值来量化模型参数不确定性。凭借有限的计算资源,研究人员通常使用相对较少的昂贵模型在高空间分辨率下运行,或者在较低的空间分辨率下运行许多较便宜的模型。这导致了一个空旷的问题:是否有可能有效地结合高分辨率模型的信息?我们提出了一种贝叶斯仿真校准方法,以多种分辨率吸收模型输出和观察。作为宾夕法尼亚州河流社区的案例研究,我们使用Lisflood-FP洪水危害模型演示了我们的方法。多分辨率方法在多种情况下,对单个分辨率方法的参数推断提高了参数推断。结果根据参数值和可用模型的数量而有所不同。我们的方法是一般的,可用于校准其他高维计算机模型以改善投影。

Riverine floods pose a considerable risk to many communities. Improving flood hazard projections has the potential to inform the design and implementation of flood risk management strategies. Current flood hazard projections are uncertain, especially due to uncertain model parameters. Calibration methods use observations to quantify model parameter uncertainty. With limited computational resources, researchers typically calibrate models using either relatively few expensive model runs at high spatial resolutions or many cheaper runs at lower spatial resolutions. This leads to an open question: Is it possible to effectively combine information from the high and low resolution model runs? We propose a Bayesian emulation-calibration approach that assimilates model outputs and observations at multiple resolutions. As a case study for a riverine community in Pennsylvania, we demonstrate our approach using the LISFLOOD-FP flood hazard model. The multiresolution approach results in improved parameter inference over the single resolution approach in multiple scenarios. Results vary based on the parameter values and the number of available models runs. Our method is general and can be used to calibrate other high dimensional computer models to improve projections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源