论文标题
使用地理负载转移来减少碳排放
Using Geographic Load Shifting to Reduce Carbon Emissions
论文作者
论文摘要
越来越多的关注与计算相关的用电和碳排放量导致主要云计算公司的承诺,以降低其碳足迹。数据中心具有独特的能力,可以在不同地理位置之间移动计算负载,从而产生可用于减少碳排放的地理负载灵活性。在本文中,我们提出了一个模型,其中数据中心独立于ISOS移动负载。我们首先考虑由位置边缘碳排放引导的负载转移的影响,并由$λ_ {\ text {co} _2} $表示,这是一种敏感性度量,可测量增量负载转移的影响。相对于以前的数据中心负载转移模型,提出的模型提高了准确性,并包括有关数据中心和电力市场运行的更现实的假设。此外,我们介绍了一个新的基准模型,其中数据中心可以访问有关电源系统的完整信息,并可以确定当前时间段的最佳变化。我们使用5分钟的负载和一年的生成数据在IEEE RTS GMLC系统上演示了模型的功效。我们的结果表明,基于$λ_ {\ text {co} _2} $的转移模型的提出的准确性改进非常有效,从而导致结果优于基准模型。
An increasing focus on the electricity use and carbon emissions associated with computing has lead to pledges by major cloud computing companies to lower their carbon footprint. Data centers have a unique ability to shift computing load between different geographical locations, giving rise to geographic load flexibility that can be employed to reduce carbon emissions. In this paper, we present a model where data centers shift load independently of the ISOs. We first consider the impact of load shifting guided by locational marginal carbon emissions, denoted by $λ_{\text{CO}_2}$, a sensitivity metric that measures the impact of incremental load shifts. Relative to previous models for data center load shifting, the presented model improves accuracy and include more realistic assumptions regarding the operation of both data centers and the electricity market. Further, we introduce a new benchmark model in which data centers have access to the full information about the power system and can identify optimal shifts for the current time period. We demonstrate the efficacy of our model on the IEEE RTS GMLC system using 5 minute load and generation data for an entire year. Our results show that the proposed accuracy improvements for the shifting model based on $λ_{\text{CO}_2}$ are highly effective, leading to results that outperform the benchmark model.