论文标题

相互正交的周期系统

Mutually orthogonal cycle systems

论文作者

Burgess, Andrea C., Cavenagh, Nicholas J., Pike, David A.

论文摘要

图$γ$的$ {\ ell} $ - 循环系统$ {\ MATHCAL F} $是一组$ {\ ell} $ - 循环,该循环将$γ$的边缘集划分为$γ$。两个这样的周期系统$ {\ MATHCAL F} $和$ {\ MATHCAL F}'$被称为{\ em Orthogonal},如果没有两个不同的循环与$ {\ Mathcal f} \ Cup {\ Mathcal F}'$分享比一边相比更多的循环。正交循环系统自然来自面部$ 2 $ - 颜色的Polyehdra,而在Heffter Arrays的较高属中,带有某些订单。 $γ$的一组成对的正交$ \ ell $ - 周期系统是$γ$的一组相互正交的周期系统。 令$μ(\ ell,n)$(分别为$μ'(\ ell,n)$)为最大整数$μ$,因此存在一组$μ$相互正交(循环)$ \ ell $ $ $ -CYCELE SYSTEMS完整图形$ k_n $。我们表明,如果$ \ ell \ geq 4 $均匀而$ n \ equiv 1 \ pmod {2 \ ell} $,则$μ'(\ ell,n)$,因此,$μ(\ ell,n)$在下面由$ n/\ ell^2 $的常数倍数。相比之下,我们获得以下上限:$μ(\ ell,n)\ leq n-2 $; $μ(\ ell,n)\ leq(n-2)(n-3)/(2(\ ell-3))$当$ \ ell \ geq 4 $; $μ(\ ell,n)\ leq 1 $当$ \ ell> n/\ sqrt {2} $;和$μ'(\ ell,n)\ leq n-3 $当$ n \ geq 4 $。我们还获得了$ n $和$ \ ell $的小值的计算结果。

An ${\ell}$-cycle system ${\mathcal F}$ of a graph $Γ$ is a set of ${\ell}$-cycles which partition the edge set of $Γ$. Two such cycle systems ${\mathcal F}$ and ${\mathcal F}'$ are said to be {\em orthogonal} if no two distinct cycles from ${\mathcal F}\cup {\mathcal F}'$ share more than one edge. Orthogonal cycle systems naturally arise from face $2$-colourable polyehdra and in higher genus from Heffter arrays with certain orderings. A set of pairwise orthogonal $\ell$-cycle systems of $Γ$ is said to be a set of mutually orthogonal cycle systems of $Γ$. Let $μ(\ell,n)$ (respectively, $μ'(\ell,n)$) be the maximum integer $μ$ such that there exists a set of $μ$ mutually orthogonal (cyclic) $\ell$-cycle systems of the complete graph $K_n$. We show that if $\ell\geq 4$ is even and $n\equiv 1\pmod{2\ell}$, then $μ'(\ell,n)$, and hence $μ(\ell,n)$, is bounded below by a constant multiple of $n/\ell^2$. In contrast, we obtain the following upper bounds: $μ(\ell,n)\leq n-2$; $μ(\ell,n)\leq (n-2)(n-3)/(2(\ell-3))$ when $\ell \geq 4$; $μ(\ell,n)\leq 1$ when $\ell>n/\sqrt{2}$; and $μ'(\ell,n)\leq n-3$ when $n \geq 4$. We also obtain computational results for small values of $n$ and $\ell$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源