论文标题

加权统治模型和随机启发式方法

Weighted domination models and randomized heuristics

论文作者

Dijkstra, Lukas, Gagarin, Andrei, Zverovich, Vadim

论文摘要

我们考虑在顶点加权图和网络中的最小重量和最小的重量最小尺寸的主导设置问题。后一个问题是两个目标优化问题,它与经典的最小重量主导设置问题不同,该问题需要在图中找到最小重量的主导集,而无需试图优化其基数。换句话说,可以将两个目标问题中的主导集的大小最小化的目的视为一种约束,即找到帕累托最佳解决方案的特定情况。首先,我们通过使用整数线性编程公式来展示如何将两个目标优化问题减少到最小权重主导设置问题。然后,在不同的假设下,应用概率方法以在图中的最小重量主导集上获得上限。还描述了用于查找图形中小重量主导集的相应随机算法。计算实验用于说明两种不同类型的随机图的结果。

We consider the minimum weight and smallest weight minimum-size dominating set problems in vertex-weighted graphs and networks. The latter problem is a two-objective optimization problem, which is different from the classic minimum weight dominating set problem that requires finding a dominating set of the smallest weight in a graph without trying to optimize its cardinality. In other words, the objective of minimizing the size of the dominating set in the two-objective problem can be considered as a constraint, i.e. a particular case of finding Pareto-optimal solutions. First, we show how to reduce the two-objective optimization problem to the minimum weight dominating set problem by using Integer Linear Programming formulations. Then, under different assumptions, the probabilistic method is applied to obtain upper bounds on the minimum weight dominating sets in graphs. The corresponding randomized algorithms for finding small-weight dominating sets in graphs are described as well. Computational experiments are used to illustrate the results for two different types of random graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源