论文标题
用于自动测量地壳地衣的图像分析
Image analysis for automatic measurement of crustose lichens
论文作者
论文摘要
地衣是真菌与藻类之间共生产生的生物,经常用作年龄估计剂,尤其是在最近的地质沉积物和考古结构中,使用地衣大小与年龄之间的相关性。当前的非自动手动地衣和测量(使用标尺,卡尺或使用数字图像处理工具)是一个耗时且费力的过程,尤其是在样品数量较高时。 这项工作介绍了开发的工作流程以及一组图像采集和处理工具,以有效地识别扁平岩石表面的地衣地衣,并产生相关的地衣尺寸统计数据(百分比覆盖率,thalli的数量,其面积和周长)。 开发的工作流程使用常规数码相机进行图像捕获以及专门设计的目标,以允许自动图像校正和缩放分配。在此步骤之后,使用简单的线性迭代聚类(SLIC)进行图像分割和支持矢量机(SV)和随机森林分类器,基于交互式前景提取工具(GrabCut)(grabcut)和自动分类的流程进行地衣识别。 初始评估显示出令人鼓舞的结果。使用GrabCut的图像手动分类(用于训练)的平均加速度为4,如果与当前使用的技术相比,平均精度为95 \%。使用SLIC和SVM的自动分类带有默认参数,其平均精度高于70 \%。开发的系统是灵活的,可以大大减少处理时间,该工作流程使其适用于新地衣种群的数据集。
Lichens, organisms resulting from a symbiosis between a fungus and an algae, are frequently used as age estimators, especially in recent geological deposits and archaeological structures, using the correlation between lichen size and age. Current non-automated manual lichen and measurement (with ruler, calipers or using digital image processing tools) is a time-consuming and laborious process, especially when the number of samples is high. This work presents a workflow and set of image acquisition and processing tools developed to efficiently identify lichen thalli in flat rocky surfaces, and to produce relevant lichen size statistics (percentage cover, number of thalli, their area and perimeter). The developed workflow uses a regular digital camera for image capture along with specially designed targets to allow for automatic image correction and scale assignment. After this step, lichen identification is done in a flow comprising assisted image segmentation and classification based on interactive foreground extraction tool (GrabCut) and automatic classification of images using Simple Linear Iterative Clustering (SLIC) for image segmentation and Support Vector Machines (SV) and Random Forest classifiers. Initial evaluation shows promising results. The manual classification of images (for training) using GrabCut show an average speedup of 4 if compared with currently used techniques and presents an average precision of 95\%. The automatic classification using SLIC and SVM with default parameters produces results with average precision higher than 70\%. The developed system is flexible and allows a considerable reduction of processing time, the workflow allows it applicability to data sets of new lichen populations.