论文标题

通过功能地图对应关系的可变形对象的掌握转移

Grasp Transfer for Deformable Objects by Functional Map Correspondence

论文作者

de Farias, Cristiana, Tamadazte, Brahim, Stolkin, Rustam, Marturi, Naresh

论文摘要

处理机器人抓握的物体变形仍然是要解决的主要问题。在本文中,我们为此问题提出了一个有效的无学习解决方案,其中生成的对象区域的掌握假设适用于其变形配置。为此,我们研究了功能图(FM)对应关系的适用性,其中将形状匹配问题视为在降低的几何函数之间搜索对应关系。对于用户选择的对象的区域,由基于本地接触力矩(LOCOMO)的GRASP计划者生成的GRASP候选列表。提出的基于FM的方法将这些候选物映射到遭受任意变形水平的对象的实例。然后,在对象上执行了尽可能多地尊重原始手指配置的同时分析其运动学可行性的最佳掌握。我们已经将方法的性能与两个不同的具有5个不同变形的不同对象的对象的稳定性和区域抓地精度进行了比较。

Handling object deformations for robotic grasping is still a major problem to solve. In this paper, we propose an efficient learning-free solution for this problem where generated grasp hypotheses of a region of an object are adapted to its deformed configurations. To this end, we investigate the applicability of functional map (FM) correspondence, where the shape matching problem is treated as searching for correspondences between geometric functions in a reduced basis. For a user selected region of an object, a ranked list of grasp candidates is generated with local contact moment (LoCoMo) based grasp planner. The proposed FM-based methodology maps these candidates to an instance of the object that has suffered arbitrary level of deformation. The best grasp, by analysing its kinematic feasibility while respecting the original finger configuration as much as possible, is then executed on the object. We have compared the performance of our method with two different state-of-the-art correspondence mapping techniques in terms of grasp stability and region grasping accuracy for 4 different objects with 5 different deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源