论文标题
SwitchHit:一种基于互补性的概率的开关系统,用于改善不断变化的环境中的视觉位置识别
SwitchHit: A Probabilistic, Complementarity-Based Switching System for Improved Visual Place Recognition in Changing Environments
论文作者
论文摘要
Visual Place识别(VPR)是计算机视觉和机器人技术中的基本任务,是主要基于视觉信息识别位置的问题。观点和外观变化,例如由于天气和季节性变化,这使这项任务具有挑战性。当前,没有通用的VPR技术可以在各种环境,各种机器人平台上以及在广泛的观点和外观变化下工作。最近的工作表明,通过评估某些特定VPR数据集的互补性以实现更好的性能,可以智能地组合不同的VPR方法。但是,这需要地面真相信息(正确的匹配),当机器人在现实世界中部署时无法使用。此外,对于资源受限的嵌入式平台,并行运行多种VPR技术可能会令人难以置信。为了克服这些局限性,本文提出了基于概率互补性的开关VPR系统SwitchHit。我们提出的系统由多种VPR技术组成,但是,它不仅仅是一次运行所有技术,而是预测传入查询图像正确匹配的概率,如果正确匹配查询的概率低于某个阈值,则可以动态切换到另一种互补技术。这种对多种VPR技术的创新使用使我们的系统比采用蛮力并立即运行多种VPR技术的其他合并的VPR方法更有效,更强大。因此,使其更适合资源约束的嵌入式系统,并通过独立运行来实现系统中任何个人VPR方法的总体性能。
Visual place recognition (VPR), a fundamental task in computer vision and robotics, is the problem of identifying a place mainly based on visual information. Viewpoint and appearance changes, such as due to weather and seasonal variations, make this task challenging. Currently, there is no universal VPR technique that can work in all types of environments, on a variety of robotic platforms, and under a wide range of viewpoint and appearance changes. Recent work has shown the potential of combining different VPR methods intelligently by evaluating complementarity for some specific VPR datasets to achieve better performance. This, however, requires ground truth information (correct matches) which is not available when a robot is deployed in a real-world scenario. Moreover, running multiple VPR techniques in parallel may be prohibitive for resource-constrained embedded platforms. To overcome these limitations, this paper presents a probabilistic complementarity based switching VPR system, SwitchHit. Our proposed system consists of multiple VPR techniques, however, it does not simply run all techniques at once, rather predicts the probability of correct match for an incoming query image and dynamically switches to another complementary technique if the probability of correctly matching the query is below a certain threshold. This innovative use of multiple VPR techniques allow our system to be more efficient and robust than other combined VPR approaches employing brute force and running multiple VPR techniques at once. Thus making it more suitable for resource constrained embedded systems and achieving an overall superior performance from what any individual VPR method in the system could have by achieved running independently.