论文标题
通过分布鲁棒性的全局本地正规化
Global-Local Regularization Via Distributional Robustness
论文作者
论文摘要
尽管在许多情况下表现出色,但深层神经网络通常容易受到对抗性示例和分配变化的影响,从而限制了现实世界应用中的模型泛化能力。为了减轻这些问题,最近的方法利用分布鲁棒性优化(DRO)来找到最具挑战性的分布,然后在这个最具挑战性的分布中最大程度地减少损失功能。无论取得了一些改进,这些DRO方法都有明显的局限性。首先,他们纯粹专注于局部正规化以增强模型鲁棒性,缺少全球正则化效应,这在许多现实世界应用中很有用(例如,域适应性,域通用和对抗性机器学习)。其次,现有的DRO方法中的损失功能仅在最具挑战性的分布中运行,因此将原始分布与原始分布相吻合,从而导致了限制性建模能力。在本文中,我们提出了一种新型的正规化技术,遵循基于Wasserstein的DRO框架的脉络。具体而言,我们定义了一种特定的联合分布和基于Wasserstein的不确定性,使我们能够将原始和最具挑战性的分布搭配起来,以增强建模能力并同时应用本地和全球正规化。关于不同学习问题的实证研究表明,我们提出的方法显着优于各种领域中现有的正则化方法:半监督学习,域的适应性,领域的概括和对抗性机器学习。
Despite superior performance in many situations, deep neural networks are often vulnerable to adversarial examples and distribution shifts, limiting model generalization ability in real-world applications. To alleviate these problems, recent approaches leverage distributional robustness optimization (DRO) to find the most challenging distribution, and then minimize loss function over this most challenging distribution. Regardless of achieving some improvements, these DRO approaches have some obvious limitations. First, they purely focus on local regularization to strengthen model robustness, missing a global regularization effect which is useful in many real-world applications (e.g., domain adaptation, domain generalization, and adversarial machine learning). Second, the loss functions in the existing DRO approaches operate in only the most challenging distribution, hence decouple with the original distribution, leading to a restrictive modeling capability. In this paper, we propose a novel regularization technique, following the veins of Wasserstein-based DRO framework. Specifically, we define a particular joint distribution and Wasserstein-based uncertainty, allowing us to couple the original and most challenging distributions for enhancing modeling capability and applying both local and global regularizations. Empirical studies on different learning problems demonstrate that our proposed approach significantly outperforms the existing regularization approaches in various domains: semi-supervised learning, domain adaptation, domain generalization, and adversarial machine learning.