论文标题

惠特克类别,正确分层的类别和谎言的Fock空间分类

Whittaker categories, properly stratified categories and Fock space categorification for Lie superalgebras

论文作者

Chen, Chih-Whi, Cheng, Shun-Jen, Mazorchuk, Volodymyr

论文摘要

我们研究了I型I型惠特克模块的各种类别的超级甲壳虫,被认为是适合正确分层类别框架的凝聚力类别。这些类别是Baceelin functor $γ_ζ$的目标。我们表明,可以将这些类别描述为等效性,是BGG类别$ \ MATHCAL O $的Serre serre,以及Harish-Chandra $的某些单数类别(\ Mathfrak G,\ Mathfrak g _ {\ bar 0})$ - bimodules。我们还表明$γ_ζ$是Serre商函子的实现。我们进一步研究了A型A型组上的$ Q $ -Symetized Fock空间,并证明,对于一般线性而言,我们的whittaker类别,函数$γ_ζ$以及各种serre serre vertients和serre vortient functient functors的实现,分类此$ q $ q $ q $ q $ q $ q-smymetrized $ q $ $ $ $ - $ smmertmmmermemmmmmermemermemmmmermemmmmermemmmmermemermemmermemmermemmermemmmmmermemerize。在这张图片中,在此$ q $ symetrized的fock空间中的规范和双重规范基础分别对应于这些Whittaker类别中的倾斜和简单对象。

We study various categories of Whittaker modules over a type I Lie superalgebra realized as cokernel categories that fit into the framework of properly stratified categories. These categories are the target of the Backelin functor $Γ_ζ$. We show that these categories can be described, up to equivalence, as Serre quotients of the BGG category $\mathcal O$ and of certain singular categories of Harish-Chandra $(\mathfrak g,\mathfrak g_{\bar 0})$-bimodules. We also show that $Γ_ζ$ is a realization of the Serre quotient functor. We further investigate a $q$-symmetrized Fock space over a quantum group of type A and prove that, for general linear Lie superalgebras our Whittaker categories, the functor $Γ_ζ$ and various realizations of Serre quotients and Serre quotient functors categorify this $q$-symmetrized Fock space and its $q$-symmetrizer. In this picture, the canonical and dual canonical bases in this $q$-symmetrized Fock space correspond to tilting and simple objects in these Whittaker categories, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源