论文标题

扩展Schur的$ Q $ functions和全部Kostant- type $ d $的Lie代数的高潮层次结构

Extended Schur's $Q$-functions and the full Kostant--Toda hierarchy on the Lie algebra of type $D$

论文作者

Kodama, Yuji, Okada, Soichi

论文摘要

半神经元素上的全部Kostant-Toda层次结构是一个宽松方程的系统,其中流量由Chevalley不变性的梯度确定。本文涉及完整的Kostant-Tabo-Toda-toda-toda-toda-toda-toda-toda-toda-toda-toda-toda层。通过将Lax矩阵的PFAFFIAN作为Chevalley不变式之一,我们构建了与此不变性相关的流动的明确形式。作为主要结果,我们在时间变量中介绍了Schur的$ Q $函数的扩展,并使用它们为层次结构的多项式$τ$ functions提供明确的公式。

The full Kostant--Toda hierarchy on a semisimple Lie algebra is a system of Lax equations, in which the flows are determined by the gradients of the Chevalley invariants.This paper is concerned with the full Kostant--Toda hierarchy on the even orthogonal Lie algebra. By using a Pfaffian of the Lax matrix as one of the Chevalley invariants, we construct an explicit form of the flow associated to this invariant. As a main result, we introduce an extension of the Schur's $Q$-functions in the time variables, and use them to give explicit formulas for the polynomial $τ$-functions of the hierarchy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源