论文标题

使用卫星图像中的可解释的机器学习探索荒野特征

Exploring Wilderness Characteristics Using Explainable Machine Learning in Satellite Imagery

论文作者

Stomberg, Timo T., Stone, Taylor, Leonhardt, Johannes, Weber, Immanuel, Roscher, Ribana

论文摘要

荒野地区提供了重要的生态和社会利益,并且有迫切的理由可以发现它们的积极特征和生态功能存在并能够蓬勃发展。我们将新型的可解释的机器学习技术应用于卫星图像,该图像显示了Fennoscandia的野生和人为区域。在可解释的人工神经网络中阻塞某些激活,我们完成了有关野生和人为特征的全面敏感性分析。这使我们能够预测详细的高分辨率灵敏度图,以突出这些特征。我们的人工神经网络提供了可解释的激活空间,增加了对我们方法的信心。在激活空间内,区域是语义上的。我们的方法进步可以解释遥感的机器学习,提供了对现有荒野进行全面分析的机会,并且在保护工作方面具有实际相关性。

Wilderness areas offer important ecological and social benefits and there are urgent reasons to discover where their positive characteristics and ecological functions are present and able to flourish. We apply a novel explainable machine learning technique to satellite images which show wild and anthropogenic areas in Fennoscandia. Occluding certain activations in an interpretable artificial neural network we complete a comprehensive sensitivity analysis regarding wild and anthropogenic characteristics. This enables us to predict detailed and high-resolution sensitivity maps highlighting these characteristics. Our artificial neural network provides an interpretable activation space increasing confidence in our method. Within the activation space, regions are semantically arranged. Our approach advances explainable machine learning for remote sensing, offers opportunities for comprehensive analyses of existing wilderness, and has practical relevance for conservation efforts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源