论文标题
使用光谱图分析的协作机器人映射
Collaborative Robot Mapping using Spectral Graph Analysis
论文作者
论文摘要
在本文中,我们解决了在集中式多机器人大满贯框架中创建全球一致姿势图的问题。为了使每个机器人自主行动,都可以维护单个机姿势估计和地图,然后将其通信到中央服务器以构建优化的全局地图。但是,由于车载轨道仪漂移或故障,板载和服务器估计之间的不一致性可能发生。此外,如果服务器以可计算且可易于处理和带宽效率的方式没有提供反馈,则机器人不会从协作地图中受益。在这一挑战中,本文提出了一个新颖的协作映射框架,以实现机器人和服务器之间的准确全局映射。特别是,使用图谱分析在不同的空间尺度上利用机器人和服务器图之间的结构差异,以生成单个机器人姿势图的必要约束。使用多种现实世界多机器人现场部署对所提出的方法进行了彻底的分析和验证,我们显示了高达90%的机载系统的改进。
In this paper, we deal with the problem of creating globally consistent pose graphs in a centralized multi-robot SLAM framework. For each robot to act autonomously, individual onboard pose estimates and maps are maintained, which are then communicated to a central server to build an optimized global map. However, inconsistencies between onboard and server estimates can occur due to onboard odometry drift or failure. Furthermore, robots do not benefit from the collaborative map if the server provides no feedback in a computationally tractable and bandwidth-efficient manner. Motivated by this challenge, this paper proposes a novel collaborative mapping framework to enable accurate global mapping among robots and server. In particular, structural differences between robot and server graphs are exploited at different spatial scales using graph spectral analysis to generate necessary constraints for the individual robot pose graphs. The proposed approach is thoroughly analyzed and validated using several real-world multi-robot field deployments where we show improvements of the onboard system up to 90%.