论文标题

量子混乱的模式匹配

Quantum jumbled pattern matching

论文作者

Juárez-Xochitemol, Julio, Chávez, Edgar

论文摘要

令$ s_1,s_2 \在σ^*$弦乐中,我们说$ s_1 $ {\ em jumble match} $ s_2 $如果它们彼此排列。给定一个尺寸$ n $的文本$ t $和σ^*$中的字符串$ s \,\ emph {jumbled pattern匹配}(jpm)的问题是确定$ t $ jumbled匹配$ s $的所有子字符。在经典计算中,广泛的猜想是,jpm需要$ω(n^{2-ε})$ $ o(1)$查询时间或$ω(n^{1-Δ})$查询时间的预处理时间和空间,在线版本中,$ε,δ> 0 $。在本文中,我们为在线jpm介绍$ o(\ sqrt {n})$时间的量子算法。

Let $S_1, S_2 \in Σ^*$ strings, we say that $S_1$ {\em jumble match} $S_2$ if they are permutations of each other. Given a text $T$ of size $N$ and a string $S \in Σ^*$, the problem of \emph{Jumbled Pattern Matching} (JPM) is to determine all substrings in $T$ jumbled matching $S$. In classical computing, a widespread conjecture is that JPM requires $Ω(N^{2-ε})$ preprocessing time and space for $O(1)$ query time, or $Ω(N^{1-δ})$ query time in the online version, with $ε, δ>0$. In this paper, we present a quantum algorithm for the online JPM in $O(\sqrt{N})$ time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源