论文标题

界面处不可压缩的活动相。 I.配方和轴对称奇数流

Incompressible active phases at an interface. I. Formulation and axisymmetric odd flows

论文作者

Jia, Leroy L., Irvine, William T. M., Shelley, Michael J.

论文摘要

受到最近将2D手性液的意识到活跃的单层液滴的启发,我们在数学上从数学上制定了其自由式动力学。表面液滴描述为一般的2D线性,不可压缩的和各向同性的流体,具有粘性剪切应力,主动的手性驱动应力以及缺乏时间转换对称性允许的大厅应力。该液滴通过其驱动的内部力学和驱动流量在基础3D Stokes阶段与自身相互作用。我们使用从表面应力到3D Stokes方程的表面速度的映射,将动力学作为对单数积分分化方程的解决方案。专门针对轴对称液滴的情况,用分析和数值技术求解了手性表面流的精确表示。对于圆盘形的单层,我们还采用了半分析溶液,该解决方案以贝塞尔功能的正交为基础取决于贝塞尔功能,并可以有效地计算单层速度场,从几乎固体的旋转到单向边缘的范围从单向边缘到单相后的explase eppths expth the the sphase eppths expths expth和saffman-delbruck delbruck delbruck delbruck。除了在近壁极限中,这些溶液在液滴边界处具有不同的表面剪切应力,这是一个嵌入三维介质中的具有编成iMimension One域的系统的签名。我们进一步研究了霍尔粘度的影响,霍尔粘度将径向和横向表面速度成分对闭合腔的动力学进行。

Inspired by the recent realization of a 2D chiral fluid as an active monolayer droplet moving atop a 3D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2D linear, incompressible, and isotropic fluid, having a viscous shear stress, an active chiral driving stress, and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3D Stokes phase. We pose the dynamics as the solution to a singular integral-differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current depending on the subphase depth and the Saffman-Delbruck length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension one domains embedded in a three-dimensional medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源