论文标题

使用动态模式分解的Fisher-Kolmogorov肿瘤生长模型的数据驱动模拟

Data-driven simulation of Fisher-Kolmogorov tumor growth models using Dynamic Mode Decomposition

论文作者

Viguerie, Alex, Grave, Malú, Barros, Gabriel F., Lorenzo, Guillermo, Reali, Alessandro, Coutinho, Alvaro L. G. A.

论文摘要

通过常规收集的临床和成像数据个性化的癌症的器官规模生物力学模型的计算机模拟,使患者特定于患者的肿瘤生长和治疗反应的预测对患者受影响器官的解剖结构进行了预测。这些特定于患者的计算预测被认为是个性化癌症临床管理并为个别患者提供最佳治疗计划的有前途的方法,这构成了临床肿瘤学的及时和关键需求。但是,对基本时空模型的计算机模拟可能需要实现高度的计算成本,这构成了成功开发用于个性化肿瘤预测的临床可行计算技术的障碍。为了解决这个问题,我们在这里建议利用动态模式分解(DMD)来构建癌症模型的低维表示并加速其模拟。 DMD是一种基于奇异值分解的无监督的机器学习方法,在许多应用中被证明是一种预测性和诊断工具。我们表明,DMD可以应用于Fisher-Kolmogorov模型,该模型构成了既定的配方,以代表未经处理的实体瘤生长,可以进一步适应其他相关的癌症现象。我们的结果表明,该模型在临床上相关的参数空间上实施了该模型的实施可以产生令人印象深刻的预测,尽管训练时间很短,但短期到中期的错误仍为1%以下,长期误差仍少于20%。我们认为,这种数据驱动的方法有可能大大减少癌症模型个性化模拟的计算开销,从而促进肿瘤的预测,参数识别,不确定性定量和治疗优化。

The computer simulation of organ-scale biomechanistic models of cancer personalized via routinely collected clinical and imaging data enables to obtain patient-specific predictions of tumor growth and treatment response over the anatomy of the patient's affected organ. These patient-specific computational forecasts have been regarded as a promising approach to personalize the clinical management of cancer and derive optimal treatment plans for individual patients, which constitute timely and critical needs in clinical oncology. However, the computer simulation of the underlying spatiotemporal models can entail a prohibitive computational cost, which constitutes a barrier to the successful development of clinically-actionable computational technologies for personalized tumor forecasting. To address this issue, here we propose to utilize Dynamic-Mode Decomposition (DMD) to construct a low-dimensional representation of cancer models and accelerate their simulation. DMD is an unsupervised machine learning method based on the singular value decomposition that has proven useful in many applications as both a predictive and a diagnostic tool. We show that DMD may be applied to Fisher-Kolmogorov models, which constitute an established formulation to represent untreated solid tumor growth that can further accommodate other relevant cancer phenomena. Our results show that a DMD implementation of this model over a clinically-relevant parameter space can yield impressive predictions, with short to medium-term errors remaining under 1% and long-term errors remaining under 20%, despite very short training periods. We posit that this data-driven approach has the potential to greatly reduce the computational overhead of personalized simulations of cancer models, thereby facilitating tumor forecasting, parameter identification, uncertainty quantification, and treatment optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源