论文标题
接触次接触子 - 里曼3D歧管的周期性测量学
Periodic geodesics for contact sub-Riemannian 3D manifolds
论文作者
论文摘要
本文的目的是在接触3D-Manifold上研究针对次黎曼次级指标的周期性测量学。我们开发两个相当独立的主题:1)在通用度量的周期性旋转周围围绕周期性的旋转的封闭地理学的存在。
The goal of this paper is to study periodic geodesics for sub-Riemannian metrics on a contact 3D-manifold.We develop two rather independent subjects:1) The existence of closed geodesics spiraling around periodic Reeb orbits for a generic metric.2) The precise study of the periodic geodesics for a right invariant metric on a quotient of SL2(R)