论文标题

猴子业务:强化学习与邻里搜索虚拟网络嵌入

Monkey Business: Reinforcement learning meets neighborhood search for Virtual Network Embedding

论文作者

Elkael, Maxime, Aba, Massinissa Ait, Araldo, Andrea, Castel, Hind, Jouaber, Badii

论文摘要

在本文中,我们考虑了5G网络切片的虚拟网络嵌入(VNE)问题。此问题需要在基板虚拟化物理网络上分配多个虚拟网络(VN),同时最大化资源利用,最大数量放置的VN和网络运营商的好处。我们解决了随着时间的推移将切片到达的问题的在线版本。受嵌套推出策略改编(NRPA)算法的启发,这是著名的蒙特卡洛树搜索(MCT)的变体,该变体学习了如何随着时间的推移进行良好的模拟,我们提出了一种新的算法,我们称之为邻里增强的策略适应(NEPA)。我们的算法的关键特征是观察NRPA无法利用状态树一个分支中获得的知识,而另一个分支则以不同的方式开始。 NEPA通过以节俭的方式将NRPA与邻居搜索相结合来学习,该方式仅改善了有希望的解决方案,同时保持运行时间较低。我们将此技术称为猴子业务,因为它归结为从一个有趣的分支跳到另一个分支,类似于猴子如何从树上跳到树,而不是每次倒下。与其他最先进的算法相比,NEPA在接受率和成本比率方面取得了更好的结果,无论是在实际和合成的拓扑上。

In this article, we consider the Virtual Network Embedding (VNE) problem for 5G networks slicing. This problem requires to allocate multiple Virtual Networks (VN) on a substrate virtualized physical network while maximizing among others, resource utilization, maximum number of placed VNs and network operator's benefit. We solve the online version of the problem where slices arrive over time. Inspired by the Nested Rollout Policy Adaptation (NRPA) algorithm, a variant of the well known Monte Carlo Tree Search (MCTS) that learns how to perform good simulations over time, we propose a new algorithm that we call Neighborhood Enhanced Policy Adaptation (NEPA). The key feature of our algorithm is to observe NRPA cannot exploit knowledge acquired in one branch of the state tree for another one which starts differently. NEPA learns by combining NRPA with Neighbordhood Search in a frugal manner which improves only promising solutions while keeping the running time low. We call this technique a monkey business because it comes down to jumping from one interesting branch to the other, similar to how monkeys jump from tree to tree instead of going down everytime. NEPA achieves better results in terms of acceptance ratio and revenue-to-cost ratio compared to other state-of-the-art algorithms, both on real and synthetic topologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源