论文标题

单枪自制粒子跟踪

Single-shot self-supervised particle tracking

论文作者

Midtvedt, Benjamin, Pineda, Jesús, Skärberg, Fredrik, Olsén, Erik, Bachimanchi, Harshith, Wesén, Emelie, Esbjörner, Elin K., Selander, Erik, Höök, Fredrik, Midtvedt, Daniel, Volpe, Giovanni

论文摘要

粒子跟踪是数字显微镜的基本任务。最近,机器学习方法在克服更古典方法的局限性方面取得了长足的进步。最先进的机器学习方法的培训几乎普遍依赖于大量标记的实验数据或数值模拟现实数据集的能力。但是,通过实验产生的数据通常具有挑战性的标签,并且不能轻易地以数字复制。在这里,我们提出了一种新颖的深度学习方法,称为Lodestar(低射击深度对称跟踪和回归),该方法学会了从单个未标记的实验图像中以子像素精度的对象进行跟踪。通过利用数据的固有旋转转换对称性来使这成为可能。我们证明,Lodestar在准确性方面优于传统方法。此外,我们分析了包含密集包装细胞或嘈杂背景的挑战性实验数据。我们还利用其他对称性来通过缩放信号强度来扩展信号及其极化性,从而将可测量的粒子性质扩展到粒子的垂直位置。由于能够使用单个未标记的图像训练深入学习模型,Lodestar可以加速用于工程,生物学和医学的高质量显微镜分析管道。

Particle tracking is a fundamental task in digital microscopy. Recently, machine-learning approaches have made great strides in overcoming the limitations of more classical approaches. The training of state-of-the-art machine-learning methods almost universally relies on either vast amounts of labeled experimental data or the ability to numerically simulate realistic datasets. However, the data produced by experiments are often challenging to label and cannot be easily reproduced numerically. Here, we propose a novel deep-learning method, named LodeSTAR (Low-shot deep Symmetric Tracking And Regression), that learns to tracks objects with sub-pixel accuracy from a single unlabeled experimental image. This is made possible by exploiting the inherent roto-translational symmetries of the data. We demonstrate that LodeSTAR outperforms traditional methods in terms of accuracy. Furthermore, we analyze challenging experimental data containing densely packed cells or noisy backgrounds. We also exploit additional symmetries to extend the measurable particle properties to the particle's vertical position by propagating the signal in Fourier space and its polarizability by scaling the signal strength. Thanks to the ability to train deep-learning models with a single unlabeled image, LodeSTAR can accelerate the development of high-quality microscopic analysis pipelines for engineering, biology, and medicine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源