论文标题

边界层过渡开始时皮肤摩擦增强的起源

Origin of Enhanced Skin Friction at the Onset of Boundary-Layer Transition

论文作者

Wang, Mengze, Eyink, Gregory L., Zaki, Tamer A.

论文摘要

边界层过渡伴随着皮肤摩擦的显着增加,其起源是使用Navier-Stokes方程的随机拉格朗日公式严格解释的。该公式允许在粘性不可压缩流体流动的各个实现中对涡度动力学进行精确分析。在这里首次扩展到Neumann边界条件(Lighthill Source)。因此,我们可以表达墙壁涡度,因此可以表达壁应力,作为向后时间不变的随机cauchy不变的期望,伴随着(a)壁涡流通量(Lighthill Source)和(b)内部涡度的贡献,这种涡度已通过非线性差异,粘性差异,粘性散射,vortex伸展和tillex伸展。我们考虑过渡区域中应力最大值的起源,检查了足够数量的事件以表示皮肤摩擦增加。随机分析用于每个事件,以追踪壁涡度的起源。我们发现,灯光的来源,涡旋倾斜,扩散和外部涡度的对流造成了较小的贡献。它们不如近壁旋转涡度的跨度拉伸,这是层状到腹部过渡期间皮肤摩擦增加的主要来源。我们的分析应该更普遍地帮助您理解拖曳策略,并根据近壁涡度动态来理解拖曳策略和流动分离。

Boundary-layer transition is accompanied by a significant increase in skin friction whose origin is rigorously explained using the stochastic Lagrangian formulation of the Navier-Stokes equations. This formulation permits the exact analysis of vorticity dynamics in individual realizations of a viscous incompressible fluid flow. The Lagrangian reconstruction formula for vorticity is here extended for the first time to Neumann boundary conditions (Lighthill source). We can thus express the wall vorticity, and therefore the wall stress, as the expectation of a stochastic Cauchy invariant in backward time, with contributions from (a) wall-vorticity flux (Lighthill source) and (b) interior vorticity that has been evolved by nonlinear advection, viscous diffusion, vortex stretching and tilting. We consider the origin of stress maxima in the transitional region, examining a sufficient number of events to represent the increased skin friction. The stochastic Cauchy analysis is applied to each event to trace the origin of the wall vorticity. We find that the Lighthill source, vortex tilting, diffusion and advection of outer vorticity make minor contributions. They are less important than spanwise stretching of near-wall spanwise vorticity, which is the dominant source of skin-friction increase during laminar-to-turbulent transition. Our analysis should assist more generally in understanding drag generation and reduction strategies and flow separation in terms of near-wall vorticity dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源