论文标题

自主系统的无梯度多域优化

Gradient-free Multi-domain Optimization for Autonomous Systems

论文作者

Zheng, Hongrui, Betz, Johannes, Mangharam, Rahul

论文摘要

自主系统由几个子系统组成,例如机械,推进,感知,计划和控制。这些传统上是单独设计的,这使集成系统的性能优化成为重大挑战。在本文中,我们研究了使用无梯度优化方法共同优化自主系统的多个域,以找到硬件和软件的最佳体系结构集。我们在自动驾驶汽车上专门执行多域,多参数优化,以找到最佳的决策过程,运动计划和控制算法以及自主赛车的物理参数。我们详细介绍了多域优化方案,具有不同核心组件的基准测试,并提供了对新自治系统的概括的见解。此外,本文提供了三个不同操作环境中六个不同梯度优化器的性能的基准。 通过案例研究对我们的方法进行了验证,在该案例研究中,我们描述了自动驾驶汽车系统体系结构,优化方法,最后提供了关于无梯度优化的论点,是以集成方式提高自主系统性能的有力选择。

Autonomous systems are composed of several subsystems such as mechanical, propulsion, perception, planning and control. These are traditionally designed separately which makes performance optimization of the integrated system a significant challenge. In this paper, we study the problem of using gradient-free optimization methods to jointly optimize the multiple domains of an autonomous system to find the set of optimal architectures for both hardware and software. We specifically perform multi-domain, multi-parameter optimization on an autonomous vehicle to find the best decision-making process, motion planning and control algorithms, and the physical parameters for autonomous racing. We detail the multi-domain optimization scheme, benchmark with different core components, and provide insights for generalization to new autonomous systems. In addition, this paper provides a benchmark of the performances of six different gradient-free optimizers in three different operating environments. Our approach is validated with a case study where we describe the autonomous vehicle system architecture, optimization methods, and finally, provide an argument on gradient-free optimization being a powerful choice to improve the performance of autonomous systems in an integrated manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源